STRUCTURES OF DNACIN A_1 AND B_1 , NEW NAPHTHYRIDINOMYCIN-TYPE ANTITUMOR ANTIBIOTICS

TSUNEAKI HIDA*, MASAYUKI MUROI[†], SEIICHI TANIDA and Setsuo Harada^{††}

Discovery Research Laboratories II, [†] Coordination and Management Department, and ^{††} Research on Research, Takeda Chemical Industries, Ltd., Jusohonmachi-2, Yodogawa-ku, Osaka 532, Japan

(Received for publication February 16, 1994)

Dnacin A_1 and B_1 were revealed to be new naphthyridinomycin-type antitumor antibiotics with formulae of $C_{20}H_{23}N_5O_4$ and $C_{19}H_{24}N_4O_5$, respectively. The gross structure of dnacin A_1 was elucidated by the spectroscopic analyses. Conversion of dnacin B_1 into A_1 by treatment with potassium cyanide indicated the presence of an α -carbinolamine moiety in dnacin B_1 . The relative stereochemistry of dnacins was clarified by analysis of the NOESY spectra.

Dnacin A₁ (1) and B1 (2) are benzoquinoid antibiotics which were isolated from the culture broth of *Actinosynnema pretiosum* C-14482 during our screening system using an Hfr strain of *E. coli* and which show strong activity against Gram-positive, Gram-negative, and acid-fast bacteria.^{1~3)} They also show antitumor activity by binding to DNA and indeed prolong the life-span of mice with leukemia P388.⁴⁾ In addition, we recently found that they inhibit cdc25B phosphatase which is expressed at high levels in some cancer cells.⁵⁾ In this report, we describe the structures of dnacins.

Results and Discussion

Physico-chemical properties of 1 and 2 are summarized in Table 1. In our previous studies, the molecular

formulae of dnacins were not ascertained. However, the molecular ion peak at m/z 397 in the FD-MS spectrum, number of carbons in the ¹³C NMR spectrum, and elemental analysis revealed that the molecular formula of 1 is C₂₀H₂₃N₅O₄. In the case of **2**, although only the dehydrate peak was observed at m/z 370 in the FD-MS spectrum, the molecular formula was determined to be C₁₉H₂₄N₄O₅.

Dnacin A_1 (1) has IR absorption bands at 1650, 1625, and 1600 cm⁻¹, and UV absorption maxima at 213, 281, and 496 nm in MeOH, indicating the presence of an aminobenzoquinone moiety.²⁾ The ¹H and ¹³C NMR spectral data of 1 and 2 are shown in Table 2. The assignments of all the signals were accomplished by 2D NMR techniques including ¹H-¹H COSY, ¹³C-¹H COSY, COLOC, and Fig. 1. Structures of dnacins and naphthyridinomycins.

5'

CH₃

	1	2	
Appearance	Dark red needles	Dark red needles	
MP	$> 300^{\circ}C$ (dec)	$> 300^{\circ}C$ (dec)	
$[\alpha]_{D}^{20}$ (c 0.06, CHCl ₃)	$+125^{\circ}$ $+50^{\circ}$		
FD-MS m/z	397 (M ⁺)	$370 (M^+ - H_2O)$	
Molecular formula	$C_{20}H_{23}N_5O_4 \cdot 0.5H_2O$	$C_{19}H_{24}N_4O_5 \cdot 1.2H_2O$	
Analysis (%)	Found Calcd	Found Calcd	
	C: 59.10 59.10	C: 55.61 55.66	
	H; 5.70 5.95	H: 6.31 6.49	
	N: 17.14 17.23	N: 13.64 13.66	
UV (MeOH) λ nm (ϵ)	213 (22,300), 281 (9,000),	213 (24,300), 283 (9,300),	
- (496 (2,100)	496 (2,100)	
IR (KBr) ν cm ⁻¹	3430, 1680, 1650, 1625, 1600	3580, 3420, 3175, 1685, 1650, 1610	

Table 1. Physico-chemical properties of dnacin A_1 (1) and B_1 (2).

Table 2. ¹H and ¹³C NMR spectral data of dnacin A_1 (1) and B_1 (2).

Position –	1 ^a		2 ^b	
	¹³ C	$^{1}\text{H}(J=\text{Hz})$	¹³ C	$^{1}\mathrm{H}(J=\mathrm{Hz})$
1	50.1	2.95 m,	50.9	2.92 dt (12.6, 9.5),
		3.12 ddd (2.5, 7.2, 12.4)		3.10 ddd (2.5, 7.2, 12.6)
2	61.6	3.71 ddd (2.5, 7.2, 8.8),	62.8	3.70 ddd (2.5, 7.2, 9.5),
		4.01 dt (9.6, 7.2)		3.96 dt (9.5, 7.2)
3a	93.1	4.73 s	94.8	4.71 s
4	35.1	2.95 m	35.2	2.87 dt (12.5, 6.4)
4' 2	29.0	1.71 dd (6.8, 13.3),	29.6	1.54 dd (6.4, 12.5),
		2.40 dt (6.8, 13.3)		2.36 dt (7.1, 12.5)
4a	60.2	3.18 m	61.5	3.13 m
5'	41.3	2.42 s (3H)	41.0	2.37 s (3H)
6	62.4	3.39 m	61.8	3.44 m
7	54.2	3.94 d (3.4)	89.3	4.17 d (3.6)
9	56.7	4.18 br s	54.4	4.44 br s
9′	59.8	3.65 dd (1.0, 11.4),	60.7	3.49 dd (1.4, 10.9),
		3.89 dd (2.5, 11.4)		4.03 dd (2.7, 10.9)
9a -	138.5		140.3	
10	182.0		183.8	
11	146.9		150.8	
12	101.4	5.77 s	100.1	5.69 s
13	183.8		185.3	
13a	145.1		146.9	
13b	47.6	3.81 s	49.1	3.74 s
13c	53.1	2.85 d (2.9)	53.3	2.98 d (3.1)
CN	117.4			
NH_2		5.25 brs (2H)		
OH		5.98 br		

^a In $CDCl_3$.

^b In CD₃OD.

NOESY. Comparison of the ¹³C NMR spectra of 1 and 2 revealed a couple of differences. The resonance at δ 54.2 in 1 was shifted to δ 89.3 in 2, and the signal at δ 117.4 in 1 was not observed in 2. From the chemical shifts, we supposed that the signal at δ 117.4 in 1 is attributable to a cyano carbon, nevertheless no absorption band was observed around 2300 cm⁻¹ in the IR spectrum of 1, and the signal at δ

89.3 was assigned to an α -carbinolamine carbon (-N-CH-OH). These considerations were confirmed by the transformation of **2** into **1** by treatment with potassium cyanide in MeOH. Incorporation of a cyano group into an α -carbinolamine moiety has also been reported in the case of naphthiridinomycin-type antibiotics.^{6~12)} The ¹³C NMR data of **1** was very similar to that of cyanonaphthyridino-

mycin¹³⁾, except for the benzoquinone moiety. The position of the amino group on the quinone ring was determined by a COLOC experiment (Figs. 2 and 3). The 9'-H signal at δ 3.89 had a cross peak with the signal at δ 138.5 which was assignable to C-9a. On the other hand, the aromatic proton signal at δ 5.77 had a cross peak not with the signal at δ 138.5 but with the signal at δ 145.1 which was assignable to C-13a. These observation clarified the presence of an amino substituent at C-11. Therefore, the gross structures of 1 and 2 were elucidated to be as shown in Fig. 1.

The NOESY spectrum of 1 gave important informations about stereochemistry (Figs. 4 and 5). The signal at δ 1.71 (4'-H) showed cross peaks with the signals of 3a-H and 7-H, indicating that these protons are on the same side as the bridge at C-4'. On the other hand, the singlet signal at δ 3.81 (13b-H) showed cross peaks with the signals of 4a-H and 2-H (δ 4.01), and the signal at δ 2.85 (13c-H) had a cross peak with the signal of 9-H. These findings indicated that 13b-H, 13c-H, 4a-H, and 9-H are on the opposite side of C-4'. The relative stereochemistry of 1 and 2 revealed here is same as that of other naphthyridino-

mycin-type antibiotics.

Cyanocycline $A^{7 \sim 10}$ (cyanonaphthyridinomycin)⁸⁾, B, and C¹¹⁾ and naphthyridinomycin^{6,7)} have 11-methoxy and 12-methyl substituents, while naphtocyanidine¹¹⁾ (cyanocycline F)¹⁰⁾ and SF-1739 HP¹²⁾ have 11-hydroxy and 12-methyl substituents. Dnacins A₁ (1) and B₁ (2) which have an 11-amino substituent are new members of this group.

Fig. 5. NOE network of dnacin A_1 (1).

Experimental

NMR Spectroscopy

NMR spectra were recorded on a Bruker

AC-300 instrument (¹H, 300 MHz; ¹³C, 75 MHz) at 24°C: Chemical shifts (δ) are reported in ppm downfield from TMS, and 0.1 M solutions were used. All NMR experiments were performed using standard programs of the Bruker library. The COLOC spectra were obtained from a 256 × 4 K data matrix. Parameters were optimized for J_{CH} =7.1 Hz, and the conditions were as follows: number of scans, 80; total measuring time, 13.5 hours. The NOESY spectra were obtained from a 256 × 1 K data matrix. The mixing time was set to 1 second, and the conditions were as follows: number of scans, 32; total measuring time, 13 hours.

Conversion of 2 into 1

Acetic acid (20 ml, 0.35 mmol) and potassium cyanide (13 mg, 0.20 mmol) were added to a solution of 2 (40 mg, 0.10 mmol) in MeOH (2.0 ml), and the reaction mixture was stirred for 20 minutes at room

temperature. After concentration, the residue obtained was suspended in water and extracted with $CHCl_3$ at pH 8.0. The organic layer was concentrated and applied to a column of silica gel. Elution with $CHCl_3$ -MeOH (50:1 and 25:1) followed by concentration gave 1 as dark red crystals (28 mg, 68%).

Acknowledgments

We are grateful to Dr. H. OKAZAKI and Dr. K. KITANO for their encouragement throughout this work.

References

- TANIDA, S.; T. HASEGAWA, M. MUROI & E. HIGASHIDE: Dnacins, new antibiotics. I. Producing organism, fermentation, and antimicrobial activities. J. Antibiotics 33: 1443~1448, 1980
- MUROI, M.; S. TANIDA, M. ASAI & T. KISHI: Dnacins, new antibiotics. II. Isolation and characterization. J. Antibiotics 33: 1449~1456, 1980
- TANIDA, S.; T. HASEGAWA & M. YONEDA: Use of an Hfr strain of E. coli for prescreening of antitumor antibiotics. Agric. Biol. Chem. 45: 2013 ~ 2018, 1981
- TANIDA, S.; T. HASEGAWA & M. YONEDA: Mechanism of action of dnacin B₁, a new benzoquinoid antibiotic with antitumor properties. Antimicrob. Agents Chemother. 22: 735~742, 1982
- 5) HORIGUCHI, T.; K. NISHI, S. HAKODA, S. TANIDA, A. NAGATA & H. OKAYAMA: Dnacin A₁ and dnacin B₁ are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochemical Pharmacology, submitted
- 6) KLUEPFEL, D.; H. A. BAKER, G. PIATTONI, S. N. SEHGAL, A. SIDOROWICZ, K. SINGH & C. VÉZINA: Naphthyridinomycin, a new broad-spectrum antibiotic. J. Antibiotics 28: 497~502, 1975
- SYGUSCH, J.; F. BRISSE, S. HANESSIAN & D. KLUEPFEL: The molecular structure of naphthyridinomycin, a broad spectrum antibiotic. Tetrahedron Lett. 1974: 4021 ~ 4023, 1974
- ZMJEWSKI, M. J., Jr. & M. GOEBEL: Cyanonaphthyridinomycin, a derivative of naphthyridinomycin. J. Antibiotics 35: 524~526, 1982
- 9) HAYASHI, T.; T. NOTO, Y. NAWATA, H. OKAZAKI, M. SAWADA & K. ANDO: Cyanocycline A, a new antibiotic. Taxonomy of the producing organism, fermentation, isolation and characterization. J. Antibiotics 35: 771~777, 1982
- HAYASHI, T. & Y. NAWATA: X-ray crystallographic determination of the molecular structures of the antibiotic cyanocycline A and related compounds. J. Chem. Soc. Perkin Trans. II. 1983: 335~343, 1983
- 11) GOULD, S. J.; W. HE, & M. C. CONE: New cyanocyclines from a cyanide-treated broth of *Streptomyces lusitanus*. Lloydia 56: 1239~1245, 1993
- ITOH, J.; S. OMOTO, S. INOUYE, Y. KODAMA, T. HISAMATSU, T. NIIDA & Y. OGAWA: New semisynthetic antitumor antibiotics, SF-1739 HP and naphthiccyanidine. J. Antibiotics 35: 642~644, 1982
- ZMIJEWSKI, M. J., Jr.; M. MIKOLAJCZAK, V. VISWANATHA & V. J. HRUBY: Biosynthesis of the antitumor antibiotic naphthyridinomycin. J. Am. Chem. Soc. 104: 4969~4971, 1982